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Alphabet: 

• Definition − An alphabet is any finite set of symbols. 

• Example − ∑ = {a, b, c, d} is an alphabet set where ‘a’, ‘b’, ‘c’, 
and ‘d’ are symbols. 

String: 

• Definition − A string is a finite sequence of symbols taken from 
∑. 

• Example − ‘cabcad’ is a valid string on the alphabet set ∑ = {a, b, 
c, d} 

Length of a String: 

• Definition − It is the number of symbols present in a string. 
(Denoted by |S|). 

• Examples − 

o If S = ‘cabcad’, |S|= 6 

o If |S|= 0, it is called an empty string (Denoted by λ or ε) 

Kleene Star: 

• Definition − The Kleene star, ∑*, is a unary operator on a set of 
symbols or strings, ∑, that gives the infinite set of all possible 
strings of all possible lengths over ∑ including λ. 

• Representation − ∑* = ∑0 ∪ ∑1 ∪ ∑2 ∪……. where ∑p is the set of 
all possible strings of length p. 



• Example − If ∑ = {a, b}, ∑* = {λ, a, b, aa, ab, ba, bb,………..} 

Kleene Closure / Plus 

• Definition − The set ∑+ is the infinite set of all possible strings of 
all possible lengths over ∑ excluding λ. 

• Representation − ∑+ = ∑1 ∪ ∑2 ∪ ∑3 ∪……. 

∑+ = ∑* − { λ } 

• Example − If ∑ = { a, b } , ∑+ = { a, b, aa, ab, ba, bb,………..} 

Language: 

• Definition − A language is a subset of ∑* for some alphabet ∑. It 
can be finite or infinite. 

• Example − If the language takes all possible strings of length 2 
over ∑ = {a, b}, then L = { ab, aa, ba, bb } 

NB:Treat lamda(λ)  as epsilon(€) 

Automata: 

The term "Automata" is derived from the Greek word "αὐτόματα" which 
means "self-acting". An automaton (Automata in plural) is an abstract 
self-propelled computing device which follows a predetermined 
sequence of operations automatically. 

An automaton with a finite number of states is called a Finite 
Automaton (FA) or Finite State Machine (FSM). 

Formal definition of a Finite Automaton 

An automaton can be represented by a 5-tuple (Q, ∑, δ, q0, F), where − 

• Q is a finite set of states. 

• ∑ is a finite set of symbols, called the alphabet of the automaton. 

• δ is the transition function. 

• q0 is the initial state from where any input is processed (q0 ∈ Q). 



• F is a set of final state/states of Q (F ⊆ Q). 

 

Finite Automaton can be classified into two types − 

• Deterministic Finite Automaton (DFA) 

• Non-deterministic Finite Automaton (NDFA / NFA) 

Deterministic Finite Automaton (DFA) 

In DFA, for each input symbol, one can determine the state to which the 
machine will move. Hence, it is called Deterministic Automaton. As it 
has a finite number of states, the machine is called Deterministic 
Finite Machine or Deterministic Finite Automaton. 

Formal Definition of a DFA 

A DFA can be represented by a 5-tuple (Q, ∑, δ, q0, F) where − 

• Q is a finite set of states. 

• ∑ is a finite set of symbols called the alphabet. 

• δ is the transition function where δ: Q × ∑ → Q 

• q0 is the initial state from where any input is processed (q0 ∈ Q). 

• F is a set of final state/states of Q (F ⊆ Q). 

Graphical Representation of a DFA 

A DFA is represented by digraphs called state diagram. 

• The vertices represent the states. 

• The arcs labeled with an input alphabet show the transitions. 

• The initial state is denoted by an empty single incoming arc. 

• The final state is indicated by double circles. 

Example 

Let a deterministic finite automaton be → 



• Q = {a, b, c}, 

• ∑ = {0, 1}, 

• q0 = {a}, 

• F = {c}, and 

 

Transition function δ as shown by the following table –(Transition 
Table) 

Present State(δ/∑) Next State for Input 0 Next State for Input 1 
a a b 

b c a 

c b c 

 

 

 

 

Non-deterministic Finite Automaton 
In NDFA, for a particular input symbol, the machine can move to any 
combination of the states in the machine. In other words, the exact state 
to which the machine moves cannot be determined. Hence, it is 
called Non-deterministic Automaton. As it has finite number of states, 



the machine is called Non-deterministic Finite Machine or Non-
deterministic Finite Automaton. 

Formal Definition of an NDFA 

An NDFA can be represented by a 5-tuple (Q, ∑, δ, q0, F) where − 

• Q is a finite set of states. 

• ∑ is a finite set of symbols called the alphabets. 

• δ is the transition function where δ: Q × ∑ → 2Q 

(Here the power set of Q (2Q) has been taken because in case of 
NDFA, from a state, transition can occur to any combination of Q 
states) 

• q0 is the initial state from where any input is processed (q0 ∈ Q). 

• F is a set of final state/states of Q (F ⊆ Q). 

Graphical Representation of an NDFA: (same as DFA) 

An NDFA is represented by digraphs called state diagram. 

• The vertices represent the states. 

• The arcs labeled with an input alphabet show the transitions. 

• The initial state is denoted by an empty single incoming arc. 

• The final state is indicated by double circles. 

Example 

Let a non-deterministic finite automaton be → 

• Q = {a, b, c} 

• ∑ = {0, 1} 

• q0 = {a} 

• F = {c} 

 

 



 

 

The transition function δ as shown below – 

Present State(δ/∑) Next State for Input 0 Next State for Input 1 
a a, b b 

b c a, c 

c b, c c 

 

 

 

 

 

 

 

 

 

 

 



 

 

DFA vs NDFA 

The following table lists the differences between DFA and NDFA. 

DFA NDFA 

The transition from a state is to a 
single particular next state for each 
input symbol. Hence it is 
called deterministic. 

The transition from a state can be 
to multiple next states for each 
input symbol. Hence it is 
called non-deterministic. 

Empty string transitions are not 
seen in DFA. 

NDFA permits empty string 
transitions. 

Backtracking is allowed in DFA In NDFA, backtracking is not 
always possible. 

Requires more space. Requires less space. 

A string is accepted by a DFA, if it 
transits to a final state. 

A string is accepted by a NDFA, if 
at least one of all possible 
transitions ends in a final state 

 

Acceptors, Classifiers:  

Acceptor (Recognizer) 

An automaton that computes a Boolean function is called an acceptor. 
All the states of an acceptor is either accepting or rejecting the inputs 
given to it. 

Classifier 



A classifier has more than two final states and it gives a single output 
when it terminates. 

Acceptability by DFA and NDFA 

A string is accepted by a DFA/NDFA iff the DFA/NDFA starting at the 
initial state ends in an accepting state (any of the final states) after 
reading the string wholly. 

A string S is accepted by a DFA/NDFA (Q, ∑, δ, q0, F), iff 

δ*(q0, S) ∈ F 

The language L accepted by DFA/NDFA is 

{S | S ∈ ∑* and δ*(q0, S) ∈ F} 

A string S′ is not accepted by a DFA/NDFA (Q, ∑, δ, q0, F), iff 

δ*(q0, S′) ∉ F 

The language L′ not accepted by DFA/NDFA (Complement of accepted 
language L) is 

{S | S ∈ ∑* and δ*(q0, S) ∉ F} 

Example 

Let us consider the DFA shown in Figure From the DFA, the acceptable 
strings can be derived. 

 

 



Strings accepted by the above DFA: {0, 00, 11, 010, 101, ...........} 

Strings not accepted by the above DFA: {1, 011, 111, ........} 

Equivalence of NFA and DFA: 

Let X = (Qx, ∑, δx, q0, Fx) be an NDFA which accepts the language L(X). 
We have to design an equivalent DFA Y = (Qy, ∑, δy, q0, Fy) such 
that L(Y) = L(X). The following procedure converts the NDFA to its 
equivalent DFA − 

Algorithm: 

Input − An NDFA 

Output − An equivalent DFA 

Step 1 − Create state table from the given NDFA. 

Step 2 − Create a blank state table under possible input alphabets for 
the equivalent DFA. 

Step 3 − Mark the start state of the DFA by q0 (Same as the NDFA). 

Step 4 − Find out the combination of States {Q0, Q1,... , Qn} for each 
possible input alphabet. 

Step 5 − Each time we generate a new DFA state under the input 
alphabet columns, we have to apply step 4 again, otherwise go to step 
6. 

Step 6 − The states which contain any of the final states of the NDFA 
are the final states of the equivalent DFA. 

Example 

Let us consider the NDFA shown in the figure below. 

 

 

 

 

 



 

 

 

 

 

q δ(q,0) δ(q,1) 

a {a,b,c,d,e} {d,e} 

b {c} {e} 

c ∅ {b} 

d {e} ∅ 

e ∅ ∅ 

 

Using the above algorithm, we find its equivalent DFA. The state table of 

the DFA is shown in below. 

 

 



 

 

 

The state diagram of the DFA is as follows – 

q δ(q,0) δ(q,1) 

[a] [a,b,c,d,e] [d,e] 

[a,b,c,d,e] [a,b,c,d,e] [b,d,e] 

[d,e] [e] ∅ 

[b,d,e] [c,e] [e] 

[e] ∅ ∅ 

[c, e] ∅ [b] 

[b] [c] [e] 

[c] ∅ [b] 



 

 

 

DFA Minimization 

DFA Minimization using Myphill-Nerode Theorem 

Algorithm: 

Input − DFA 

Output − Minimized DFA 

Step 1 − Draw a table for all pairs of states (Qi, Qj) not necessarily 
connected directly [All are unmarked initially] 

Step 2 − Consider every state pair (Qi, Qj) in the DFA where Qi ∈ F and 

Qj ∉ F or vice versa and mark them. [Here F is the set of final states] 



Step 3 − Repeat this step until we cannot mark anymore states − 

If there is an unmarked pair (Qi, Qj), mark it if the pair {δ (Qi, A), δ (Qi, 
A)} is marked for some input alphabet. 

Step 4 − Combine all the unmarked pair (Qi, Qj) and make them a single 
state in the reduced DFA. 

Example: 

Let us use Algorithm 2 to minimize the DFA shown below. 

 

Step 1 − We draw a table for all pair of states. 

 a b c d e f 

a       

b       

c       

d       

e       

f       



Step 2 − We mark the state pairs. 

 a b c d e f 

a       

b       

c ✔ ✔     

d ✔ ✔     

e ✔ ✔     

f   ✔ ✔ ✔  

 

Step 3 − We will try to mark the state pairs, with green colored check 

mark, transitively. If we input 1 to state ‘a’ and ‘f’, it will go to state ‘c’ and 

‘f’ respectively. (c, f) is already marked, hence we will mark pair (a, f). 

Now, we input 1 to state ‘b’ and ‘f’; it will go to state ‘d’ and ‘f’ 

respectively. (d, f) is already marked, hence we will mark pair (b, f). 

 a b c d e f 

a       

b       

c ✔ ✔     

d ✔ ✔     

e ✔ ✔     

f ✔ ✔ ✔ ✔ ✔  

 



After step 3, we have got state combinations {a, b} {c, d} {c, e} {d, e} 
that are unmarked. 

We can recombine {c, d} {c, e} {d, e} into {c, d, e} 

Hence we got two combined states as − {a, b} and {c, d, e} 

So the final minimized DFA will contain three states {f}, {a, b} and {c, d, 
e} 

 

 

DFA Minimization using Equivalence Theorem 

If X and Y are two states in a DFA, we can combine these two states 
into {X, Y} if they are not distinguishable. Two states are 
distinguishable, if there is at least one string S, such that one of δ (X, S) 
and δ (Y, S) is accepting and another is not accepting. Hence, a DFA is 
minimal if and only if all the states are distinguishable. 

Algorithm: 

Step 1 − All the states Q are divided in two partitions − final 
states and non-final states and are denoted by P0. All the states in a 
partition are 0th equivalent. Take a counter k and initialize it with 0. 

Step 2 − Increment k by 1. For each partition in Pk, divide the states in 
Pk into two partitions if they are k-distinguishable. Two states within this 
partition X and Y are k-distinguishable if there is an input S such 
that δ(X, S) and δ(Y, S) are (k-1)-distinguishable. 



Step 3 − If Pk ≠ Pk-1, repeat Step 2, otherwise go to Step 4. 

Step 4 − Combine kth equivalent sets and make them the new states of 
the reduced DFA. 

Example 

Let us consider the following DFA − 

 

q δ(q,0) δ(q,1) 

a b c 

b a d 

c e f 

d e f 

e e f 

f f f 

 

 



Let us apply the above algorithm to the above DFA − 

• P0 = {(c,d,e), (a,b,f)} 

• P1 = {(c,d,e), (a,b),(f)} 

• P2 = {(c,d,e), (a,b),(f)} 

Hence, P1 = P2. 

There are three states in the reduced DFA. The reduced DFA is as 

follows – 

Q δ(q,0) δ(q,1) 

(a, b) (a, b) (c,d,e) 

(c,d,e) (c,d,e) (f) 

(f) (f) (f) 

 

Nondeterministic Finite Automata with ε transitions (ε-NFA) : 

• For both DFAs and NFAs, you must read a symbol in order for the 

machine to make a move.  

• In Nondeterministic Finite Automata with ε transitions (ε-NFA) – Can 

make move without reading a symbol of the read tape – Such a move is 

called a ε transition 

1. The automaton may be allowed to change its state without reading 

the input symbol.  

2. In diagrams, such transitions are depicted by labeling the appropriate 

arcs with ε.  



3. Note that this does not mean that ε has become an input symbol. On 

the contrary, we assume that the symbol ε does not belong to any 

alphabet. 

 


